skip to main content


Search for: All records

Creators/Authors contains: "Ming, Yi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hom, Erik F. (Ed.)
    ABSTRACT

    Terpenes are among the oldest and largest class of plant-specialized bioproducts that are known to affect plant development, adaptation, and biological interactions. While their biosynthesis, evolution, and function in aboveground interactions with insects and individual microbial species are well studied, how different terpenes impact plant microbiomes belowground is much less understood. Here we designed an experiment to assess how belowground exogenous applications of monoterpenes (1,8-cineole and linalool) and a sesquiterpene (nerolidol) delivered through an artificial root system impacted its belowground bacterial and fungal microbiome. We found that the terpene applications had significant and variable impacts on bacterial and fungal communities, depending on terpene class and concentration; however, these impacts were localized to the artificial root system and the fungal rhizosphere. We complemented this experiment with pure culture bioassays on responsive bacteria and fungi isolated from the sorghum rhizobiome. Overall, higher concentrations (200 µM) of nerolidol were inhibitory toFerrovibriumand tested Firmicutes. While fungal isolates ofPenicilliumandPericoniawere also more inhibited by higher concentrations (200 µM) of nerolidol,Clonostachyswas enhanced at this higher level and together withHumicolawas inhibited by the lower concentration tested (100 µM). On the other hand, 1,8-cineole had an inhibitory effect onOrbiliaat both tested concentrations but had a promotive effect at 100 µM onPenicilliumandPericonia. Similarly, linalool at 100 µM had significant growth promotion inMortierella, but an inhibitory effect forOrbilia. Together, these results highlight the variable direct effects of terpenes on single microbial isolates and demonstrate the complexity of microbe-terpene interactions in the rhizobiome.

    Importance

    Terpenes represent one of the largest and oldest classes of plant-specialized metabolism, but their role in the belowground microbiome is poorly understood. Here, we used a “rhizobox” mesocosm experimental set-up to supply different concentrations and classes of terpenes into the soil compartment with growing sorghum for 1 month to assess how these terpenes affect sorghum bacterial and fungal rhizobiome communities. Changes in bacterial and fungal communities between treatments belowground were characterized, followed by bioassays screening on bacterial and fungal isolates from the sorghum rhizosphere against terpenes to validate direct microbial responses. We found that microbial growth stimulatory and inhibitory effects were localized, terpene specific, dose dependent, and transient in time. This work paves the way for engineering terpene metabolisms in plant microbiomes for improved sustainable agriculture and bioenergy crop production.

     
    more » « less
    Free, publicly-accessible full text available October 17, 2024
  2. In this paper, we develop via real variable methods various characterisations of the Hardy spaces in the multi-parameter flag setting. These characterisations include those via, the non-tangential and radial maximal function, the Littlewood–Paley square function and area integral, Riesz transforms and the atomic decomposition in the multi-parameter flag setting. The novel ingredients in this paper include (1) establishing appropriate discrete Calderón reproducing formulae in the flag setting and a version of the Plancherel–Pólya inequalities for flag quadratic forms; (2) introducing the maximal function and area function via flag Poisson kernels and flag version of harmonic functions; (3) developing an atomic decomposition via the finite speed propagation and area function in terms of flag heat semigroups. As a consequence of these real variable methods, we obtain the full characterisations of the multi-parameter Hardy space with the flag structure. 
    more » « less
  3. null (Ed.)
    Abstract While there is substantial evidence for tropospheric jet shift and Hadley cell expansion in response to greenhouse gas increases, quantitative assessments of individual mechanisms and feedback for atmospheric circulation changes remain lacking. We present a new forcing-feedback analysis on circulation response to increasing CO 2 concentration in an aquaplanet atmospheric model. This forcing-feedback framework explicitly identifies a direct zonal wind response by holding the zonal mean zonal wind exerting on the zonal advection of eddies unchanged, in comparison with the additional feedback induced by the direct response in zonal mean zonal wind. It is shown that the zonal advection feedback accounts for nearly half of the changes to the eddy-driven jet shift and Hadley cell expansion, largely contributing to the subtropical precipitation decline, when the CO 2 concentration varies over a range of climates. The direct response in temperature displays the well-known tropospheric warming pattern to CO2 increases, but the feedback exhibits negative signals. The direct response in eddies is characterized by a reduction in upward wave propagation and a poleward shift of midlatitude eddy momentum flux (EMF) convergence, likely due to an increase in static stability from moist thermodynamic adjustment. In contrast, the feedback features a dipole pattern in EMF that further shifts and strengthens midlatitude EMF convergence, resulting from the upper-level zonal wind increase seen in the direct response. Interestingly, the direct response produces an increase in eddy kinetic energy (EKE), but the feedback weakens EKE. Thus, the forcing-feedback framework highlights the distinct effect of zonal mean advecting wind from direct thermodynamic effects in atmospheric response to greenhouse gas increases. 
    more » « less
  4. null (Ed.)
    Abstract Atmospheric rivers (ARs), narrow intense moisture transport, account for much of the poleward moisture transport in midlatitudes. While studies have characterized AR features and the associated hydrological impacts in a warming climate in observations and comprehensive climate models, the fundamental dynamics for changes in AR statistics (e.g., frequency, length, width) are not well understood. Here we investigate AR response to global warming with a combination of idealized and comprehensive climate models. To that end, we developed an idealized atmospheric GCM with Earth-like global circulation and hydrological cycle, in which water vapor and clouds are modeled as passive tracers with simple cloud microphysics and precipitation processes. Despite the simplicity of model physics, it reasonably reproduces observed dynamical structures for individual ARs, statistical characteristics of ARs, and spatial distributions of AR climatology. Under climate warming, the idealized model produces robust AR changes similar to CESM large ensemble simulations under RCP8.5, including AR size expansion, intensified landfall moisture transport, and an increased AR frequency, corroborating previously reported AR changes under global warming by climate models. In addition, the latitude of AR frequency maximum shifts poleward with climate warming. Further analysis suggests the thermodynamic effect (i.e., an increase in water vapor) dominates the AR statistics and frequency changes while both the dynamic and thermodynamic effects contribute to the AR poleward shift. These results demonstrate that AR changes in a warming climate can be understood as passive water vapor and cloud tracers regulated by large-scale atmospheric circulation, whereas convection and latent heat feedback are of secondary importance. 
    more » « less
  5. Observations and theory of convectively coupled equatorial waves suggest that they can be categorized into two distinct groups. Moisture modes are waves whose thermodynamics are governed by moisture fluctuations. The thermodynamics of the gravity wave group, on the other hand, are rooted in buoyancy (temperature) fluctuations. On the basis of scale analysis, it is found that a simple nondimensional parameter—akin to the Rossby number—can explain the processes that lead to the existence of these two groups. This parameter, defined as N mode , indicates that moisture modes arise when anomalous convection lasts sufficiently long so that dry gravity waves eliminate the temperature anomalies in the convective region, satisfying weak temperature gradient (WTG) balance. This process causes moisture anomalies to dominate the distribution of moist enthalpy (or moist static energy), and hence the evolution of the wave. Conversely, convectively coupled gravity waves arise when anomalous convection eliminates the moisture anomalies more rapidly than dry gravity waves can adjust the troposphere toward WTG balance, causing temperature to govern the moist enthalpy distribution and evolution. Spectral analysis of reanalysis data indicates that slowly propagating waves ( c p ~ 3 m s −1 ) are likely to be moisture modes while fast waves ( c p ~ 30 m s −1 ) exhibit gravity wave behavior, with “mixed moisture–gravity” waves existing in between. While these findings are obtained from a highly idealized framework, it is hypothesized that they can be extended to understand simulations of convectively coupled waves in GCMs and the thermodynamics of more complex phenomena. 
    more » « less
  6. In this paper, it is shown that westward-propagating monsoon-low-pressure-system-like disturbances in the South Asian monsoon region can be simulated in an idealized moist general circulation model through the addition of a simplified parameterization of land. Land is parameterized as having one-tenth the heat capacity of the surrounding slab ocean, with evaporation limited by a bucket hydrology model. In this model, the prominent topography of the Tibetan Plateau does not appear to be necessary for these storm systems to form or propagate; therefore focus is placed on the simulation with land but no topography. The properties of the simulated storms are elucidated using regression analysis and compared to results from composites of storms from comprehensive GCMs in prior literature and reanalysis. The storms share a similar vertical profile in anomalous Ertel potential vorticity to those in reanalysis. Propagation, however, does not seem to be strongly dictated by beta-drift. Rather, it seems to be more closely consistent with linear moisture vortex instability theory, with the exception of the importance of the vertical advection term in the Ertel potential vorticity budget toward the growth and maintenance of disturbances. The results presented here suggest that a simplified GCM configuration might be able to be used to gain a clearer understanding of the sensitivity of monsoon low pressure systems to changes in the mean state climate. 
    more » « less
  7. Abstract

    Despite distinct geographic distributions of top-of-the-atmosphere radiative forcing, anthropogenic greenhouse gases and aerosols have been found to produce similar patterns of climate response in atmosphere-and-ocean coupled climate model simulations. Understanding surface energy flux changes, a crucial pathway by which atmospheric forcing is communicated to the ocean, is a vital bridge to explaining the similar full atmosphere-and-ocean responses to these disparate forcings. Here we analyze the fast, atmosphere-driven change in surface energy flux caused by present-day greenhouse gases vs aerosols to elucidate its role in shaping the subsequent slow, coupled response. We find that the surface energy flux response patterns achieve roughly two-thirds of the anti-correlation seen in the fully coupled response, driven by Rossby waves excited by symmetric changes to the land–sea contrast. Our results suggest that atmosphere and land surface processes are capable of achieving substantial within-hemisphere homogenization in the climate response to disparate forcers on fast, societally-relevant timescales.

     
    more » « less
  8. To assess deep convective parameterizations in a variety of GCMs and examine the fast-time-scale convective transition, a set of statistics characterizing the pickup of precipitation as a function of column water vapor (CWV), PDFs and joint PDFs of CWV and precipitation, and the dependence of the moisture–precipitation relation on tropospheric temperature is evaluated using the hourly output of two versions of the GFDL Atmospheric Model, version 4 (AM4), NCAR CAM5 and superparameterized CAM (SPCAM). The 6-hourly output from the MJO Task Force (MJOTF)/GEWEX Atmospheric System Study (GASS) project is also analyzed. Contrasting statistics produced from individual models that primarily differ in representations of moist convection suggest that convective transition statistics can substantially distinguish differences in convective representation and its interaction with the large-scale flow, while models that differ only in spatial–temporal resolution, microphysics, or ocean–atmosphere coupling result in similar statistics. Most of the models simulate some version of the observed sharp increase in precipitation as CWV exceeds a critical value, as well as that convective onset occurs at higher CWV but at lower column RH as temperature increases. While some models quantitatively capture these observed features and associated probability distributions, considerable intermodel spread and departures from observations in various aspects of the precipitation–CWV relationship are noted. For instance, in many of the models, the transition from the low-CWV, nonprecipitating regime to the moist regime for CWV around and above critical is less abrupt than in observations. Additionally, some models overproduce drizzle at low CWV, and some require CWV higher than observed for strong precipitation. For many of the models, it is particularly challenging to simulate the probability distributions of CWV at high temperature. 
    more » « less